corrections: Wheee

This commit is contained in:
David Bailey 2024-09-05 12:40:33 +02:00
parent cf7928dbff
commit 160183d8e6
7 changed files with 273 additions and 168 deletions

View file

@ -7,6 +7,9 @@ vorherigen Kapitel ermittelten parasitären Effekten und Kompensationsmöglichke
konkrete Bauteile für die Konstruktion eines ersten TIV verglichen und ausgewählt. Hiernach
wird die Schaltung des TIVs ausgelegt und dessen Funktionsweise erläutert.
Für das Schaltungsdesign wird hierbei das Programm {\em Altium Designer} genutzt,
welches ein komerziell erhältliches Platinendesigntool ist.
\subsection{Auslegung des TIV}
\subsubsection{OpAmp Auswahl}
@ -24,8 +27,9 @@ Zusammengefasst sind folgende Parameter von Bedeutung:
Messung von Signalen im $\SI{1}{\nano\ampere}$-Bereich gewollt ist,
sollte der Leckstrom höchstens wenige $\SI{}{\pico\ampere}$ betragen, um
die Messung nicht zu beeinflussen.
\item Hohes GBWP. Eine hohe Verstärkerbandbreite ist notwendig, um bei
den hohen Verstärkungen des TIV stabil zu bleiben (siehe Kapitel \ref{chap:basics_opamp})
\item Hohes GBWP und Verstärkung.
Entsprechend Kapitel \ref{chap:basics_opamp} ist eine hohe Verstärkerbandbreite notwendig, um bei
den hohen Verstärkungen des TIV stabil zu bleiben.
\item Niedriges Rauschen. Da das OpAmp-Spannungsrauschen mit der Eingangskapazität
interagiert, ist ein geringes Rauschen ein wichtiger Auswahlfaktor (siehe Kapitel \ref{chap:opamp_noise}).
\end{itemize}
@ -36,7 +40,7 @@ zusammen mit einigen ihrer Parameter auf.
\begin{table}[h]
\centering
\caption{\label{table:select_opamp_parameters}Parameter der Ausgewählten OpAmps}
\caption{\label{table:select_opamp_parameters}Parameter der ausgewählten OpAmps}
\begin{tabular}{ |l|r|r|r| }
\hline
OpAmp & Leckstrom & GBWP & Spannungsauschen @ $\SI{10}{\kilo\hertz}$ \\
@ -53,7 +57,7 @@ zusammen mit einigen ihrer Parameter auf.
Aus diesen OpAmps werden zwei Kandidaten genauer in Betracht gezogen.
Der {\em ADA4817} besitzt das niedrigste Eingangsrauschen der Auswahl
und könnte somit das beste Ergebnis liefern, hat jedoch ein grenzwertiges
GBWP und braucht somit eventuell die komplexere kaskadierte Verschaltung.
GBWP und braucht somit eventuell die komplexere komposite Verschaltung.
Zudem ist der Eingangsleckstrom vergleichsweise hoch.
Der {\em LTC6268-10} hat ein durchschnittliches Rauschniveau
und exzellenten Leckstrom sowie das beste GBWP der Sammlung, wodurch dieser
@ -70,7 +74,7 @@ In diesem Unterkapitel wird die konkrete Schaltung des TIVs erstellt.
Der Grundlegende Aufbau eines TIV-Schaltkreises wurde bereits in Kapitel
\ref{chap:basics_tia} beschrieben. Da der LTC6268-10 ein ausreichendes
GBWP von $\SI{4}{\giga\hertz}$ hat, ist entsprechend Kapitel
\ref{chap:effects_opamp} keine kaskadierte Schaltung notwendig.
\ref{chap:effects_opamp} keine komposite Schaltung notwendig.
Bezüglich des Rückkoppelwiderstandes ist sowohl für das
Widerstandsrauschen aus Kapitel \ref{chap:r_noise} sowie für das
@ -82,14 +86,14 @@ der Serienschaltung sowie der Feldabschirmung aus
Kapitel \ref{chap:r_para_mitigations} genutzt, um den Einfluss der
Kapazitäten zu vermindern.
Da die konkreten Werte der parasitären Effekte nicht bekannt sind und
in der Realität mit hoher Wahrscheinlichkeit größer sind als in der Simulation
(durch z.B. andere Komponenten in der Nähe, welche kapazitiv koppeln), werden
keine konkreten Werte für die Widerstände dieser Schaltung festgelegt. Diese
werden experimentell erprobt, um eine gute Balance der Eigenschaften zu bieten.
Da die konkreten Werte der parasitären Effekte nicht bekannt sind
und in der Realität mit hoher Wahrscheinlichkeit größer sind als in
der Simulation (durch z.B. andere Komponenten in der Nähe, welche kapazitiv
mit der Schaltung verkoppelt sind), erfolgt die Auswahl der konkreten Werte
für die Widerstände dieser Schaltung experimentell.
Die Auslegung der Schaltung ist in Abbildung \ref{fig:tia_v1_design} zu sehen.
U2 ist hierbei der TIVs, wofür der bereits erwähnte LTC6268-10 genutzt
U2 ist hierbei der TIV, wofür der bereits erwähnte {\em LTC6268-10} genutzt
wird. Die Rückkoppelwiderstände sind R15, R16, R17, R18, welche in einer
Reihe geschaltet werden um den Einfluss der Parallelkapazitäten zu verringern.
Die Feldabschirmung wird hierbei durch Widerstände R10 bis R13 und R20 bis R23
@ -112,7 +116,7 @@ passt zudem einige Abstandsregeln des Platinendesign an.
Bei der Auslegung der physikalischen Schaltung werden zusätzliche Einflüsse
in Betracht gezogen, welche nicht direkt auf dem Schaltplan abbildbar sind.
So ist z.B. eine vorsichtige Auslegung der Leitungen des Eingangskanals
notwendig; diese muss möglichst klein gehalten werden um Kapazitäten zu
notwendig; diese müssen möglichst wenig Fläche einnehmen um Kapazitäten zu
verringern. Aus dem gleichen Grund werden Kupferflächen reduziert und
als Muster anstatt als ausgefüllte Flächen ausgeführt.
Um einen Ladungsaufbau zu verhindern, muss der Isolations-Lack
@ -188,18 +192,20 @@ Für diese Anwendung wird ein sog. Butterworth-Filter mit zwei Stufen gewählt.
Filter bietet einen flachen Frequenzgang mit steilem Abfall von -80dB/Dekade ab der
Grenzfrequenz.
Er besteht aus zwei in Reihe geschalteten OpAmps in aktiver Filter-Konfiguration, und
kann somit mit leicht erhältlichen Dual-Package OpAmps erstellt werden. Für die genaue
kann somit mit leicht erhältlichen Dual-Package OpAmps erstellt werden.
Für diesen Filter wird der generische {\em TL072} gewählt.
Für die genaue
Auslegung des Filters wurde das ``Filter-Design-Tool'' von Analog Devices (siehe \cite{ADFilterDesign}) genutzt,
welches für die angegebenen Filter-Parameter eine Schaltung berechnet, da die
händische Berechnung der Komponenten, vor allem bei Einhaltung
standartisierter
standardisierter
Komponentenreihen (E24), nicht trivial ist.
Die erstellte Filter-Stufe ist in
Abbildung \ref{fig:filter_stage_design} dargestellt. Die berechnete Übertragungsfunktion
dieses Filters ist in Abbildung \ref{fig:filter_stage_bandwidth} aufgezeichnet.
Zu sehen ist eine glatte Übertragungsfunktion bis hin zum -3~dB-Punkt bei $\SI{30}{\kilo\hertz}$,
nach welchem wie erhofft ein steiler Abfall von -80dB/Dekade vor liegt.
nach welchem wie erhofft ein steiler Abfall von -80dB/Dekade vorliegt.
Somit werden Rauschanteile sowie andere Störsignale bereits ab $\SI{50}{\kilo\hertz}$ um einen Faktor
von 20dB gedämpft.
@ -333,7 +339,7 @@ mechanische Verbindungen zur Operation des Schaltkreises untergebracht:
und sind somit gut geeignet für das Eingangs- und Ausgangssignal des Verstärkers.
\end{itemize}
Die Plazine wird mithilfe von Standard-Anfertigungsverfahren hergestellt.
Die Plazine wird mithilfe von komerziellen Fertigungsverfahren hergestellt.
\todo[inline]{How much of this should we write down here?}
\begin{figure}[h]