comfpile-old/test/faux_build_dir/vhdl/spi_master.vhd
2023-08-12 20:39:22 +02:00

129 lines
No EOL
4.3 KiB
VHDL

--! @author David Bailey (d.bailey@cern.ch)
-- comf.include: UQDS_specifics_pkg.vhd
-- comf.vhdl.work: uqdslib
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
Library UQDSLib;
use UQDSLib.UQDS_specifics_pkg.all;
--! @brief Simple 8-bit fixed length SPI master
--! @details This VHDL code is intended to provide a basic data I/O
--! interface to easily interface with standard SPI-based peripherals.
--! Its main purpose is to clock data in/out. It does *not* contain
--! arbitratrion nor chip-select handling!
entity spi_master is
generic(
--! Will divide the FPGA-Clock by this value for the SPI clock
clkdiv : natural := 40;
clk_idle : std_logic := '1'
);
port(
--! Resets the SPI port. Will stop it mid-transition.
--! Forces data_rx to 0.
rst : in std_logic;
--! FPGA Clock to run internal logic at
clk : in std_logic;
spi_control_to : in spi_control_to_t;
spi_control_from : out spi_control_from_t;
pin_mosi : out std_logic;
pin_miso : in std_logic;
pin_clk : out std_logic
);
end;
architecture rtl of spi_master is
type spi_state_t is ( IDLE, HIGH_CLK, LOW_CLK );
signal spi_state : spi_state_t := IDLE;
signal clk_divider : integer range 0 to clkdiv/2 ;
signal bit_cnt : integer range 0 to 7;
signal data_rx_fragment : std_logic_vector(7 downto 0);
signal data_tx_fragment : std_logic_vector(6 downto 0);
signal byte_tx_complete_i : std_logic := '0';
signal byte_rx_complete_i : std_logic := '0';
begin
spi_control_from.byte_tx_complete <= byte_tx_complete_i;
spi_control_from.byte_rx_complete <= byte_rx_complete_i;
spi_transmission: process(clk)
begin
if(rising_edge(clk)) then
byte_tx_complete_i <= '0';
byte_rx_complete_i <= '0';
--! Reset clause, the rest of the code won't get to run
--! while reset asserts
if(rst = '1') then
spi_state <= IDLE;
clk_divider <= 0;
bit_cnt <= 0;
data_rx_fragment <= (others => '0');
data_tx_fragment <= (others => '0');
spi_control_from.data_rx <= (others => '0');
byte_tx_complete_i <= '0';
byte_rx_complete_i <= '0';
pin_mosi <= '0';
pin_clk <= clk_idle;
elsif(clk_divider > 0) then
clk_divider <= clk_divider - 1;
else
case spi_state is
when IDLE =>
if(spi_control_to.send_request) then
data_tx_fragment <= spi_control_to.data_tx(6 downto 0);
data_rx_fragment <= (others => '0');
clk_divider <= clkdiv / 2;
bit_cnt <= 7;
pin_clk <= not clk_idle;
pin_mosi <= spi_control_to.data_tx(spi_control_to.data_tx'left);
spi_state <= HIGH_CLK;
byte_tx_complete_i <= '1';
end if;
when HIGH_CLK =>
pin_clk <= clk_idle;
data_rx_fragment <= data_rx_fragment(6 downto 0) & pin_miso;
clk_divider <= clkdiv / 2;
spi_state <= LOW_CLK;
if(bit_cnt = 0) then
spi_control_from.data_rx <= data_rx_fragment(6 downto 0) & pin_miso;
byte_rx_complete_i <= '1';
spi_state <= IDLE;
else
bit_cnt <= bit_cnt - 1;
end if;
when LOW_CLK =>
pin_clk <= not clk_idle;
pin_mosi <= data_tx_fragment(data_tx_fragment'left);
data_tx_fragment <= data_tx_fragment(data_tx_fragment'left-1 downto 0) & '0';
clk_divider <= clkdiv / 2;
spi_state <= HIGH_CLK;
end case;
end if;
end if;
end process;
end architecture;