Im Folgenden soll auf die Relevanz und den Anwendungsbereich von Ionenmobilitätsspektrometern eingegangen werden, um dar zu legen dass die Technologie breite praktische Anwendungen findet. Ein IMS bietet im Vergleich zu anderen Gasanalyseverfahren wie z.B. einem Massenspektrometer folgende Vorteile \cite{Eiceman2013Oct}:
\item Kostengünstig. Ein IMS kann mitunter für wenige hundert Euro aufgebaut werden\cite{Reinecke2018Oct}, wodurch sie leichter in größeren Mengen aufgebaut werden können.
\item Simpler, kompakter Aufbau. Ein IMS kann unter atmosphärischem Druck betrieben werden, und braucht somit kein Vakuum-Equipment. Hierdurch sind die Systeme wesentlich transportabler als z.B. Massenspektrometer.
\item Schnelle Messungen. Messungen mit einem IMS können bis hinunter auf wenige zehntel von Sekunden dauern. Hierdurch lassen sich schnell wichtige Messwerte erfassen.
\item Hohe Sensitivität. Ein IMS kann Stoffkonzentrationen im unteren ppb messen, wodurch auch kleinste Mengen eines Stoffes sicher bestimmt werden können.
``Der Term Ionen Mobilitäts Spektrometrie (IMS) beschreibt die Prinzipien, Methoden und Instrumente zur Charakterisierung von Substanzen anhand der Geschwindigkeit von Gruppen (definiert als Gruppen von gasförmigen Ionen) entnommen von einer Substanz, in einem elektrischen Feld und einem Driftgas.'' \cite[S.S. 1]{Eiceman2013Oct}
Ein IMS-System analysiert somit Gase, in dem eine Gasprobe ionisiert wird, und mithilfe verschiedener Methodiken in diskrete Gruppen aufgespalten wird. Der Ablauf dieses Vorganges ist grundsätzlich wie folgt \cite[Seite 4]{Eiceman2013Oct}:
\item Ein diskretes Paket des ionisierten Probengases wird in eine Drift-Region injeziert, welche mit einem Driftgas gefüllt ist und über welche eine Spannung anliegt. Die Auswahl des Driftgases sowie die Amplitude,
Richtung und eventuell Frequenz der Spannung beeinflussen hierbei das Verhalten der Ionenpackete des Probengases.
\item Die angelegte Spannung beschleunigt die ionisierten Moleküle des Probengases.
Hierbei werden verschiedene Ionen durch ihre unterschiedlichen Interaktionen mit dem Driftgas sowie
des Feldes der Drift-Region voneinander getrennt.
\item Die nun zeitlich getrennten Ionen-Pakete werden durch einen Detektor aufgefangen. Typischerweise ist dies eine Faraday-Platte. Hierdurch entsteht ein Stromfluss proportional zur Menge der Ionen.
\item Ein Verstärker wandelt diese Ströme in messbare Spannungen um, welche digitalisiert und verarbeitet werden können.
\caption[Schematischer Aufbau einer IMS-Röhre]{\label{fig:IMS_Schematic}Schematischer Aufbau einer IMS-Röhre nach \cite[Seite 3, Abb. 1.2.b]{Eiceman2013Oct}}
Das Messergebnis eines IMS-Laufes wird as Spektrum bezeichnet, und ist meist als Strom über die Zeit dargestellt. In dieser Darstellung sind die verschiedenen Ionenpakete als Spitzen des Graphen zu erkennen. Abbildung \ref{fig:ims_example_spectrum} stellt beispielhalf ein solches Spektrum dar.
Wie in Kapitel \ref{chap:function_description_ims} beschrieben, beruht ein IMS auf der Messung der von den Ionenpacketen hervorgerufenen Ströme, und deren zeitlicher Verteilung.
Um die kleinen Ströme der Ione im Bereich von $\SI{1}{\pico\ampere}$ bis $\SI{10}{\nano\ampere}$ messen zu können, ist ein Verstärker notwendig. Dieser Verstärker wird als TIV bezeichnet, da er als Eingangsgröße einen Strom hat, und eine Spannung als Ausgang gibt. Die Verstärkung wird somit in Ohm angegeben. Der TIV stellt hiermit ein zentrales Bauteil eines IMS dar, dessen Parameter maßgeblich die Qualität der Messungen beeinflusst.
Hierbei ist $V_{\mathrm{n,rms}}$ der RMS-Wert des Rauschens, $k_B$ die Boltzmann-Konstante, $T$ die Temperatur, $R$ der Widerstand des betrachteten Bauteils und $\Delta f$ die Bandbreite, über welche gemessen wird. Abbildung \ref{fig:example_r_noise} zeigt den schematischen Aufbau eines rauschenden Widerstandes. \todo{Insert citation}
\item Rauschen: Ein realer OpAmp hat verschiedene Rauschquellen, welche in das Messsignal übergehen können. Dies sind Eingangsbezogenes Strom- und Spannungsrauschen \cite{tiNoise2007}, und sind in Abbildung \ref{fig:example_opamp_noise} dargestellt. Auf die genauen Quellen dieses Rauschens soll hier nicht weiter eingegangen werden, da diese durch die internen Schaltungen des OpAmp entstehen.\\
Das Spannungsrauschen ist hierbei im unteren Frequenzbereich proportional zu $1/\omega$ und flacht ab einer Eckfrequenz zu einem konstanten Wert ab, während das Stromrauschen konstant anfängt und im höheren Frequenzbereich proportional zu $\omega$ zu nimmt.
\item Der OpAmp steuert den Ausgang, um die Differenz der Eingangsspannungen zu minimieren. Da der positive Eingang fest auf $\SI{0}{\volt}$ gelegt ist, wird der negative Eingang ebenfalls auf $\SI{0}{\volt}$ gesteuert.
\item Ein Eingangsstrom fließt in den Eingang des TIV. Durch den Strom kombiniert mit einer (parasitären) Eingangskapazität bildet sich eine Spannung aus.
\item Durch die aufbauende differenzielle Spannung am Eingang steuert der OpAmp eine neue Ausgangsspannung an.
\item Die Ausgangsspannung lässt über den Rückkoppelwiderstand $R_f$ einen Strom fließen. Dieser Strom gleicht den Eingangsstrom so aus, dass die Spannung am negativen Eingang zurück auf $\SI{0}{\volt}$ getrieben wird. Die Ausgangsspannung wird somit auf $R_\mathrm{f}\cdot I_\mathrm{in}$ getrieben.
\item[+] Leicht einstellbare Verstärkung. Der Rückkoppelwiderstand legt direkt die Verstärkung fest.
\item[+] Sehr hohe Verstärkungen sind durch Auswahl eines hohen Widerstandes möglich.
\item[+] Konstante Eingangsspannung. Der TIV-Eingang wird konstant auf $\SI{0}{\volt}$ getrieben. Hierdurch werden Effekte von z.B. parasitären Kapazitäten am Eingang verringert. Zudem können Abschirmungen an $\SI{0}{\volt}$, d.h. Erde, angeschlossen werden.
\item[-] Parasitäre Effekte begrenzen oft die Bandbreite.
\item[-] Ein OpAmp mit sehr hohem GBWP ist notwendig, um stabil zu bleiben.