Im Folgenden soll auf die Relevanz und den Anwendungsbereich von Ionenmobilitätsspektrometern eingegangen werden, um dar zu legen dass die Technologie breite praktische Anwendungen findet. Ein IMS bietet im Vergleich zu anderen Gasanalyseverfahren wie z.B. einem Massenspektrometer folgende Vorteile \cite{Eiceman2013Oct}:
\item Kostengünstig. Ein IMS kann mitunter für wenige hundert Euro aufgebaut werden\cite{Reinecke2018Oct}, wodurch sie leichter in größeren Mengen aufgebaut werden können.
\item Simpler, kompakter Aufbau. Ein IMS kann unter atmosphärischem Druck betrieben werden, und braucht somit kein Vakuum-Equipment. Hierdurch sind die Systeme wesentlich transportabler als z.B. Massenspektrometer.
\item Schnelle Messungen. Messungen mit einem IMS können bis hinunter auf wenige zehntel von Sekunden dauern. Hierdurch lassen sich schnell wichtige Messwerte erfassen.
\item Hohe Sensitivität. Ein IMS kann Stoffkonzentrationen im unteren ppb messen, wodurch auch kleinste Mengen eines Stoffes sicher bestimmt werden können.
``Der Term Ionen Mobilitäts Spektrometrie (IMS) beschreibt die Prinzipien, Methoden und Instrumente zur Charakterisierung von Substanzen anhand der Geschwindigkeit von Gruppen (definiert als Gruppen von gasförmigen Ionen) entnommen von einer Substanz, in einem elektrischen Feld und einem Driftgas.'' \cite[S.S. 1]{Eiceman2013Oct}
Ein IMS-System analysiert somit Gase, in dem eine Gasprobe ionisiert wird, und mithilfe verschiedener Methodiken in diskrete Gruppen aufgespalten wird. Der Ablauf dieses Vorganges ist grundsätzlich wie folgt \cite[Seite 4]{Eiceman2013Oct}:
\item Ein diskretes Paket des ionisierten Probengases wird in eine Drift-Region injeziert, welche mit einem Driftgas gefüllt ist und über welche eine Spannung anliegt. Die Auswahl des Driftgases sowie die Amplitude,
Richtung und eventuell Frequenz der Spannung beeinflussen hierbei das Verhalten der Ionenpackete des Probengases.
\item Die angelegte Spannung beschleunigt die ionisierten Moleküle des Probengases.
Hierbei werden verschiedene Ionen durch ihre unterschiedlichen Interaktionen mit dem Driftgas sowie
des Feldes der Drift-Region voneinander getrennt.
\item Die nun zeitlich getrennten Ionen-Pakete werden durch einen Detektor aufgefangen. Typischerweise ist dies eine Faraday-Platte. Hierdurch entsteht ein Stromfluss proportional zur Menge der Ionen.
\item Ein Verstärker wandelt diese Ströme in messbare Spannungen um, welche digitalisiert und verarbeitet werden können.
\caption[Schematischer Aufbau einer IMS-Röhre]{\label{fig:IMS_Schematic}Schematischer Aufbau einer IMS-Röhre nach \cite[Seite 3, Abb. 1.2.b]{Eiceman2013Oct}}
Das Messergebnis eines IMS-Laufes wird as Spektrum bezeichnet, und ist meist als Strom über die Zeit dargestellt. In dieser Darstellung sind die verschiedenen Ionenpakete als Spitzen des Graphen zu erkennen. Abbildung \ref{fig:ims_example_spectrum} stellt beispielhalf ein solches Spektrum dar.
Wie in Kapitel \ref{chap:function_description_ims} beschrieben, beruht ein IMS auf der Messung der von den Ionenpacketen hervorgerufenen Ströme, und deren zeitlicher Verteilung.
Um die kleinen Ströme der Ione im Bereich von $\SI{1}{\pico\ampere}$ bis $\SI{10}{\nano\ampere}$ messen zu können, ist ein Verstärker notwendig. Dieser Verstärker wird als TIV bezeichnet, da er als Eingangsgröße einen Strom hat, und eine Spannung als Ausgang gibt. Die Verstärkung wird somit in Ohm angegeben. Der TIV stellt hiermit ein zentrales Bauteil eines IMS dar, dessen Parameter maßgeblich die Qualität der Messungen beeinflusst.
Wichtig ist dieser Effekt in Kombination mit hochohmigen Eingängen und Widerständen. So wird z.B. die Impedanz eines $\SI{100}{\mega\ohm}$ Widerstandes
bereits ab wenigen zehn Kilohertz maßgeblich durch die eigene parasitäre Kapazität beeinflusst.
Die Parallelkapazität ist stark von der Bauform des Widerstandes abhängig,
und liegt bei der Standardbaugröße ``1206'' im Bereich von ca. $\SI{30}{\femto\farad}$.
So wird sich bei dem $\SI{100}{\mega\ohm}$ Widerstand ein RC-Pass-Filter mit einer Grenzfrequenz von $\SI{53.05}{\kilo\hertz}$ ausbilden.
Abbildung \ref{fig:example_r_cp} zeigt einige in einer Simulation berechneten Verläufe verschiedener
Widerstandsimpedanzen
über die Frequenz, und wie diese durch die parasitäre Kapazität einbrechen.
Hierbei ist $U_{\mathrm{n,rms}}$ der RMS-Wert des Rauschens, $k_B$ die Boltzmann-Konstante, $T$ die Temperatur, $R$ der Widerstand des betrachteten Bauteils und $\Delta f$ die Bandbreite, über welche gemessen wird. Abbildung \ref{fig:example_r_noise} zeigt den schematischen Aufbau eines rauschenden Widerstandes. \todo{Insert citation}
Ein klassischer OpAmp ist ein elektronisches Bauteil, welches vielseitige Anwendungen in einer Schaltung findet. Er kann als verstärkendes oder filterndes Bauteil aufgebaut werden, sowie differenzierend oder integrierend wirken. Das grundlegende Verhalten eines OpAmps ist bei jeder Verschaltung jedoch äquivalent:\\
Hierbei ist $A_{\mathrm{ol}}$ der sog. Open-Loop-Gain bzw. die offene Verstärkung. Für einen idealen OpAmp kann dieser Wert als quasi unendlich angenommen werden. Mithilfe eines Rückkoppelpfades wird das Ausgangssignal meist an den negativen Eingang zurück geführt.
Der OpAmp wird somit den Ausgang so treiben, dass es keine Differenzspannung zwischen den Eingangssignalen gibt.
Mit korrekter Auswahl der Rückkopplung können quasi-beliebige Übertragungsfunktionen eingestellt werden. Abbildung \ref{fig:example_opamp_amplifier} zeigt einen simplen Verstärker-Schaltkreis, welcher das Eingangssignal um den Faktor 10 skaliert.
\item Eingangs-Leckströme: Ein idealier OpAmp besitzt Eingänge,
durch welche kein Strom fließen kann, um das Eingangssignal möglichst wenig zu stören.
Reale OpAmps haben jedoch messbare Eingangsströme. Je nach OpAmp-Typ befinden sich diese im Bereich von $\SI{1}{\micro\ampere}$ bis hin zu $\SI{1}{\femto\ampere}$. Diese Leckströme können in der Anwedung als TIV den gemessenen Strom stark verzerren, und beeinflussen somit negativ das Messergebnis \cite{analogINBIAS2008}.
\item Parasitäre Kapazitäten: Ein OpAmp hat, bedingt durch die physikalische Auslegung des Bauteils,
verschiedene ungewollte Kapazitäten sowohl gegen Masse, als auch zwischen den Kanälen selbst.
Diese können das Eingangssignal verzerren, und stören somit die Übertragungsfunktion \cite{tiOpAmpCap2000}.
\item Endliche Geschwindigkeit:
Ein realer OpAmp kann auf Signaländerungen nur in endlicher Zeit reagieren.
Hierdurch ergibt sich eine Grenze der Bandbreite in Relation zur Verstärkung.
Dies wird als Produkt aus Verstärkung und Bandbreite angegeben \cite{Cox2002}.
Im folgenden wird dies als GBWP, aus dem Englischen ``Gain-Bandwidth-Product'', bezeichnet.
Dies kann ebenfalls die Übertragungsfunktion beeinflussen,
da ein zu niedriges GBWP die Übertragungsfunktion instabil werden lässt.
Abbildung \ref{fig:example_opamp_gbwp}
zeigt den Einfluss verschiedener GBWP-Werte auf die Übertragungsfunktion auf. Deutlich zu erkennen ist eine Reduktion
der Bandbreite, sowie eine Resonanz, welche bei zu kleinem GBWP auftreten kann.
Dieser Effekt ist in Abbildung \ref{fig:opamp_aol_sweep} dargestellt,
welche einen klaren Einbruch der Bandbreite bei zu geringer offener Verstärkung zeigt.
\label{chap:opamp_aol_limit_explained}
\item Rauschen.
Ein realer OpAmp hat verschiedene Rauschquellen, welche in das Messsignal übergehen können.
Dies sind Eingangsbezogenes Strom- und Spannungsrauschen \cite{tiNoise2007}.
Abbildung \ref{fig:example_opamp_noise} stellt ein vereinfachtes Ersatzschaltbild der Rauschquellen dargestellt.
Auf die physikalischen Ursachen dieses Rauschens soll hier nicht weiter eingegangen werden,
da diese durch die internen Schaltungen des OpAmp entstehen.\\
Das Spannungsrauschen ist hierbei im unteren Frequenzbereich proportional zu $1/f$ und flacht ab einer Eckfrequenz zu einem konstanten Wert ab, während das Stromrauschen konstant anfängt und im höheren Frequenzbereich proportional zu $f$ zu nimmt.
Abbildung \ref{fig:example_opamp_noise_plot} zeigt das Rauschen eines beispielhaft gewählten realen OpAmps.
Ein TIV ist eine variante einer OpAmp-Verschaltung, dessen Aufgabe es ist, einen Strom in eine Spannung um zu wandeln.
Somit wird die Verstärkung der Schaltung in $\Omega$ angegeben. Die grundlegende Schaltung ist hierbei in Abbildung \ref{fig:example_tia_circuit} aufgeführt.
\item[+] Konstante Eingangsspannung. Der TIV-Eingang wird konstant auf $\SI{0}{\volt}$ getrieben. Hierdurch werden Effekte von z.B. parasitären Kapazitäten am Eingang verringert. Zudem können Abschirmungen an $\SI{0}{\volt}$, d.h. Erde, angeschlossen werden.